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For each n # N and *n�0, Qn, *n
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] as n � � are studied under
additional assumption that (+0 , +1) is a coherent pair of measures on [&1, 1] and
the sequence [*n] is regularly decreasing and satisfies limn n2*n=L # [0, +�].
The behavior of the norms and zeros of these polynomials is also studied. We show
that in some cases the sequence [Qn, *n
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orthogonal polynomials sequence corresponding to a new measure constructed as
a combination of +0 and +1 ; we conjecture that this result is valid in a more general
setting. � 1999 Academic Press

Key Words: Sobolev orthogonal polynomials; asymptotics; coherent pairs of
measures.

Article ID jath.1998.3336, available online at http:��www.idealibrary.com on

44
0021-9045�99 �30.00
Copyright � 1999 by Academic Press
All rights of reproduction in any form reserved.

* Partially supported by the Spanish DGES project PB96-0120-C03-02 and by project
Universidad de la Rioja, API-98�B12.

- Partially supported by the Junta de Andaluc@� a, under the research grants FQM0229, and
by the Spanish DGES project PB95-1205. Also, support from the European project INTAS-
93-219-ext is acknowledged.



1. INTRODUCTION

Assume that +0 and +1 are two finite Borel measures, compactly suppor-
ted on R; in what follows, supp(+0)=[&1, 1]. The study of orthogonal
polynomials with respect to an inner product of the type

( p, q)=| pq d+0+| p$q$ d+1 (1)

has a relatively short, although rich history, which we can trace back to the
work of Lewis [1]. First asymptotic properties of these polynomials (as the
degree goes to infinity) were established in the so-called ``discrete'' case,
that is when +1 is a collection of a finite number of mass points [2, 3]. The
``continuous'' case is more subtle and needed different tools for its
investigation. One of the first results was obtained in [5] (see also [9])
and can be stated as follows: if Qn and Tn denote the monic polynomials
of degree n, orthogonal with respect to (1) and +1 , respectively, then

lim
n

Qn (z)
Tn (z)

=
2

.$(z)
, (2)

uniformly on compact subsets of C� "[&1, 1], where .(z)=z+- z2&1
with - z2&1>0 when z>1.

In [5], the asymptotics (2) was established with the additional assump-
tion of a link between +0 and +1 , called coherence (see below). Later, (2)
was proved under much milder conditions on +0 and +1 (see [4]), namely,
when +0 and +1 are two arbitrary Borel measures supported on the same
sufficiently smooth Jordan curve or arc, where they satisfy the well-known
Szego� condition. This result was extended to Sobolev products with higher
order derivatives in [6].

A closer look at the inner product (1) reveals that the measures +0 and
+1 do not play an equivalent role: differentiation makes the leading coef-
ficients of the polynomials involved in the second integral of (1) to be mul-
tiplied by their degrees. This effect is the more important the larger these
degrees are, explaining the apparent independence of the limit (2) from the
measure +0 .

These considerations motivate to ``balance'' the role of both terms in (1)
by considering only monic polynomials. In other words, we are interested
in the monic polynomials Qn of degree n, which minimize the norm

&Qn &2=| Q2
n d+0+| \Q$n

n +
2

d+1
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in the class of all monic polynomials of degree n. In a more general setting,
we study orthogonality with respect to (1), where the second integral is
multiplied by a parameter which depends on the degree of the polynomial.

Thus, we proceed with some notations. In what follows, P is the space
of all polynomials with real coefficients. For +0 and +1 as above and *�0,
denote by ( } , } ; *) the expression

( p, q; *)=| pq d+0+* | p$q$ d+1 ,

where p, q # P; for any fixed *�0 it defines an inner product in P. Further,
denote

(p, q) i=| pq d+i , i=0, 1, p, q # P.

For *>0 and n # N we can consider three monic orthogonal polynomial
systems (MOPS); all the corresponding notation is gathered in the follow-
ing table:

Inner product MOPS Square of the norm

( } , } )0 Pn ?n=(Pn , Pn) 0

( } , } )1 Tn {n=(Tn , Tn) 1

( } , } ; *) Qn, * }n (*)=(Qn, * , Qn, * ; *)

In particular, Qn, 0=Pn , for n # N.
Let [*n] be a decreasing sequence of real positive numbers such that

lim
n

n2*n=L # [0, +�]. (3)

We consider only regularly decreasing sequences, which means that we
assume additionally that

lim
n

n2 (*n&1&*n)=lim
n \*n&1

*n
&1+=0. (4)

Notice that when 0<L<�, (4) follows from (3). Thus, one (and only
one) of these limits imposes a restriction on [*n] only in the extremal cases
L=0 and L=+�.

We are interested in the asymptotic behavior of the sequence [Qn, *n
] as

n � �.
This study will be carried out under an additional assumption that

(+0 , +1) is a coherent pair of measures. We recall the definition (see, e.g.,
[5]):
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Definition 1. (+0 , +1) is a coherent pair of measures if there exist non-
zero constants _1 , _2 , ..., such that

Tn (x)=
P$n+1 (x)

n+1
&_n

P$n (x)
n

, n�1. (5)

We say that (+0 , +1) is a coherent pair on [&1, 1], if supp +0=[&1, 1].

Recently, Meijer [7] classified all coherent pairs of measures (see below).
From his work it follows that whenever (+0 , +1) is a coherent pair on
[&1, 1], the limit

9(z) =
def

lim
n

Tn (z)
Pn (z)

(6)

exists and holds locally uniformly in C� "[&1, 1] (thus, 9 is analytic in this
domain).

The goal of this paper is to prove the following

Theorem 1. Let (+0 , +1) be a coherent pair of measures on [&1, 1],
and the sequence [*n] satisfies (3)�(4). Then, with the notation introduced
above,

(i) There exists the limit

lim
n

?n

}n (*n)
=k(L) # [0, 1]; (7)

(ii) Uniformly on compact subsets of C� "[&1, 1],

lim
n

Qn, *n
(z)

Pn (z)
=

9(z)
k(L) 9(z)+(1&k(L)) .$(z)�2

, (8)

where .(z)=z+-z2&1 with -z2&1>0 when z>1, and 9 is defined in (6).

Notice that for *n #const>0, limit L in (3) is infinity; we will show
below (see (22)) that k(�)=0, and (2) is a particular case of (8).

Since the right hand side of (6) is a non-vanishing analytic function out-
side of the set of accumulation points of zeros of Tn , using Hurwitz'
theorem the following corollary is immediate:

Corollary 1. The sets of accumulation points of zeros of Qn, *n
and Tn

coincide.

Using the same techniques; similar results can be obtained for symmetri-
cally coherent pairs with compact support.
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The structure of the paper is as follows. In the next section we introduce
some preliminary and auxiliary results, necessary for establishing (in Sec-
tion 3) the asymptotics of the Sobolev norms and an explicit expression for
k(L) (see Proposition 2); the proof of Theorem 1 is concluded in Section 4.
Finally, we show that in some cases the sequence [Qn, *n

] asymptotically
behaves as the manic orthogonal polynomials sequence corresponding to a
new measure constructed as a combination of +0 and +1 ; we conjecture
that this result is valid in a more general setting.

2. PRELIMINARY RESULTS

Using the result of Meijer [7], we can classify all coherent pairs of
measures on [&1, 1] as follows. Let w0 , w1 be two non-negative weights
on (&1, 1) related by

w1 (x)
w0 (x)

=
1&x2

|x&!|
, ! # R"(&1, 1), (9)

and &0 , &1 be the corresponding absolutely continuous measures on
[&1, 1]:

d&i (x)=wi (x) dx, i=0, 1. (10)

Furthermore, denote \(:, ;) (x)=(1&x): (1+x);.

Proposition 1. Let +0 , +1 be two measures, and the support
supp(+0)=[&1, 1]. Then, (+0 , +1) form a coherent pair of measures if and
only if one of the following cases holds:

Case 1 (absolutely continuous +1).

+0=&0+M$! , +1=&1 , M�0,

where either w0 (x)=\ (:, ;) (x) or w1 (x)=\(:, ;) (x).
Moreover, M{0 if and only if

w1 (x)=\(0, ;) (x) and !=1,

or

w1 (x)=\(:, 0) (x) and !=&1.

Case 2 (mass point in +1).

+0=&0 , w0 (x)=\(:, ;) (x),
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and

+1=&1+M$! , M>0.

In both cases &0 and &1 are related by (9), (10) and :, ; # R can take any
admissible value (i.e., such that w0 , w1 # L1[&1, 1]).

Thus, in the absolutely continuous case the asymptotic behavior of the
sequence [Tn �Pn] and of the norms ?n and {n is determined by the Szego�
function of the ratio w1�w0 given in (9). In Case 2, with a mass point out-
side of [&1, 1], analogous results can be obtained applying standard
techniques (see, e.g., [10, Sect. 7]). Furthermore, using this information
and formula (5), in [5] the asymptotics of the sequence [_n] was com-
puted. We gather all these results in the following Lemma, which we state
without proof (see [5, 9] for details):

Lemma 1. Under assumptions of Proposition 1, the following limits exist:

_ =
def

lim
n

_n={
1

2.(!)
,

.(!)
2

in Case 1,

in Case 2,
(11)

lim
n

?n+1

?n
=lim

n

{n+1

{n
=

1
4

, lim
n

{n

?n
=|_|, (12)

9(z)=lim
n

Tn (z)
Pn (z)

={
.$(z)

2 \1&
1

.(!) .(z)+ ,

.$(z)
2

(1&.(!)�.(z)),

in Case 1,
in Case 2,

(13)

this last limit, locally uniformly in C� "[&1, 1]. Here we take by continuity
.(\1)=\1.

Coherence of measures +0 and +1 has a very important consequence: the
structure of the sequence of Sobolev polynomials [Qn, *] can be described
by means of the following relation ([5], see also [11, Proposition 5.4.3]):

Lemma 2. For any *>0, n # N,

Pn+1 (x)&_n
n+1

n
Pn (x)=Qn+1, * (x)&:n (*) Qn, * (x), (14)

where _n are the coherence parameters introduced in (5), and

:n (*)=_n
n+1

n
?n

}n (*)
. (15)
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The identity (14) is the key to the study of the sequence [Qn, *n
].

Nevertheless, in order to compute the limit of the parameters :n , we need
to find the asymptotic behavior of the norms }n first.

3. ASYMPTOTICS OF THE SOBOLEV NORMS

We begin with the following elementary

Lemma 3. With our assumptions on [*n],

*n

*n&1

}n (*n&1)�}n (*n)�}n (*n&1),

(16)

}n (*n+1)�}n (*n)�
*n

*n+1

}n (*n+1).

In particular,

lim
n

}n (*n)
}n (*n&1)

=lim
n

}n (*n)
}n (*n+1)

=1. (17)

Proof. Using the extremal property of the norms of the monic
orthogonal polynomials and the fact that 0<*n�*n&1 , we have

}n (*n)=(Qn, *n
, Qn, *n

) 0+*n(Q$n, *n
, Q$n, *n

) 1

�(Qn, *n&1
, Qn, *n&1

) 0+*n(Q$n, *n&1
, Q$n, *n&1

) 1�}n (*n&1).

On the other hand, analogous arguments lead us to

}n (*n&1)�
*n&1

*n { *n

*n&1

(Qn, *n
, Qn, *n

) 0+*n(Q$n, *n
, Q$n, *n

) 1=
�

*n&1

*n
}n (*n).

The second inequality in (16) follows form the first one by a simple shift
*n [ *n+1 . Now, (17) is a straightforward consequence of (4). K

Lemma 4. For a fixed *>0, the sequence [}n (*)] satisfies

}n (*)=?n \Bn (*)&An
?n&1

}n&1 (*)+ , }1 (*)=?1+*{0 , (18)
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where

An=_2
n&1 \ n

n&1+
2 ?n&1

?n
, Bn (*)=1+*n2 {n&1

?n
+An . (19)

Proof. Using (14), we have that

}n (*)=(Qn, * , Qn, * ; *)

=\Pn&
n_n&1

n&1
Pn&1+:n&1 (*) Qn&1, * , Pn

&
n_n&1

n&1
Pn&1+:n&1 (*) Qn&1, * ; *+ .

Now, we have

�Pn&
n_n&1

n&1
Pn&1+:n&1 (*) Qn&1, * , Pn

&
n_n&1

n&1
Pn&1+:n&1 (*) Qn&1, *�0

=?n+\n_n&1

n&1 +
2

?n&1+:2
n&1(*)(Qn&1, * , Qn&1, *) 0

&2:n&1 (*)
n_n&1

n&1
?n&1 . (20)

On the other hand, by (5),

�P$n&
n_n&1

n&1
P$n&1+:n&1 (*) Q$n&1, * , P$n

&
n_n&1

n&1
P$n&1+:n&1 (*) Q$n&1, *�1

=(nTn&1+:n&1 (*) Q$n&1, * , nTn&1+:n&1 (*) Q$n&1, *) 1

=n2{n&1+:2
n&1(*)(Q$n&1, * , Q$n&1, *) 1 .

Thus, taking into account (20), we have that

}n (*)=?n+\n_n&1

n&1 +
2

?n&1

&2:n&1 (*)
n_n&1

n&1
?n&1+*n2{n&1+:2

n&1(*) }n&1 (*),
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and it remains to substitute the value of :n&1 (*) from (15) into the last
identity to obtain (18) and (19). K

Corollary 2. limn 4n[}n (*n&1)&}n (*n)]=0.

Proof. By (16),

0�}n (*n&1)&}n (*n)�\1&
*n

*n&1+ }n (*n&1).

Furthermore, taking into account that An>0, from (18) we have that

}n (*n&1)�?n+_2
n&1 \ n

n&1+
2

?n&1+*n&1 n2{n&1 . (21)

Thus, using (3)�(4), (21) and the well-known fact (see, e.g., [12, formula
(12.7.2); 10, Lemma 16, p. 132, and Lemma 2, p. 39]) that both 4n?n and
4n{n converge, we can conclude the proof. K

Observe that we have showed additionally that for L<+�, the
sequence [4n}n (*n)] is bounded; in fact, it converges. This follows from the
first assertion of Theorem 1, which we proceed to prove now.

Proposition 2. Under assumptions (3)�(4),

k(L)=lim
n

?n

}n (*n)
=

1
2 |_| .(L+3)

, (22)

where _ was defined in (11) and

3=|_|+
1

4 |_|
�1. (23)

Proof. For L=� this is a trivial consequence of the inequality

}n (*n)�?n+*nn2{n&1

and (12). Assume now L<�.
Denote sn=}n (*n)�?n ; then (18) can be rewritten as

sn=Bn (*n)&
An*
sn&1

, n�2, (24)

where An*=An}n&1 (*n&1)�}n&1 (*n). Define a new sequence [qn] by
qn+1=sn qn , q1=1. Then [qn] satisfies the three-term recurrence relation

qn+1&Bn (*n) qn+An*qn&1=0, (25)
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with q1=1, q2=}1 (*1)�?1 . By (12) and (17), its coefficients, given by (19),
converge,

lim
n

An*=lim
n

An=4_2, lim
n

Bn (*n)=1+4 |_| L+4_2.

For L>0 or for L=0 and !{ \1 (_{ \1�2, see (11)), it is
straightforward to check that the roots of the characteristic equation

q2&(1+4 |_| L+4_2) q+4_2=0 (26)

are real, simple and have different absolute values. Thus, by Poincare� 's
Theorem (see, e.g., [8]), sn=qn+1�qn converges to one of these roots. We
can choose to which one noticing that }n (*n)�?n , so that k(L)�1.

It remains to consider the case L=0, _2=1�4 (when Poincare� 's Theorem
is no longer applicable); then,

lim
n

An*=1, lim
n

Bn (*n)=2,

and we can choose n0 # N large enough such that for n�n0 , An*>0 and
Bn (*n)>1. Since sn�1, by (24),

sn�Bn (*n), n�n0 ,

so that

sn+1�Bn+1 (*n+1)&
A*n+1

Bn (*n)
.

Repeating this reasoning we obtain that for any fixed j # N,

1�sn+j�Bn+j (*n+j)&
A*n+j

Bn+j&1 (*n+j&1)&
A*n+j&1

. . .&
A*n+1

Bn (*n)

It is easy to check that when n � �, the right hand side of this inequality
tends to ( j+2)�( j+1). Thus,

1�lim inf
n

sn�lim sup
n

sn�
j+2
j+1

,

and since j # N is arbitrary, we obtain that limn sn=1. The assertion of the
proposition is established. K
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4. ASYMPTOTICS OF SOBOLEV POLYNOMIALS

For the time being we have obtained the asymptotics of }n (*n); in this
way, we already know the limits of the coefficients in (14). The last
preparatory step is the following

Lemma 5. Under assumptions (3)�(4),

lim
n

Qn+1, *n
(z)&Qn+1, *n+1

(z)

Pn+1 (z)
=0,

uniformly on compact subsets of C� "[&1, 1].

Proof. By Proposition 1, +0 satisfies the Szego� 's condition on [&1, 1];
therefore,

lim
n

2nPn (z)
.n (z)

exists and holds locally uniformly in C� "[&1, 1], and defines a nonzero
analytic function there. Thus, it is sufficient to prove that

lim
n

2n+1 _
Qn+1, *n

(z)

.n+1 (z)
&

Qn+1, *n+1
(z)

.n+1 (z) &=0,

locally uniformly in this domain.
In order to simplify notation, put

Un (z)=Qn, *n&1
(z), Vn (z)=Qn, *n

(z).

Then, by orthogonality of Un and Vn ,

(Un&Vn , Un&Vn) 0�(Un&Vn , Un&Vn ; *n)=(Un , Un&Vn ; *n)

=(Un , Un ; *n)&(Un , Vn ; *n)

=(Un , Un ; *n&1)&(Vn , Vn ; *n)+(*n&*n&1)(U$n , U$n) 1

�}n (*n&1)&}n (*n). (27)

Furthermore, since |.(x)|=1 for x # [&1, 1], from (27) we obtain that

�2n (Un&Vn)
.n ,

2n (Un&Vn)
.n �0

�4n[}n (*n&1)&}n (*n)],
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and by Corollary 2, the left hand side tends to zero. But for each n,
2n (Un&Vn)�.n is in the Hardy class H2, +0

in C� "[&1, 1]. Thus, standard
arguments (see, e.g., [13, Corollary 7.4]) allow us to conclude that

lim
n

2n Un (z)&Vn (z)
.n (z)

=0,

locally uniformly in C� "[&1, 1]. K

Now we are ready to prove the second assertion of Theorem 1. With the
notation

fn (z)=
Qn, *n

(z)

Pn (z)
, an (z)=:n (*n)

Pn (z)
Pn+1 (z)

,

bn (z)=1&_n
n+1

n
Pn (z)

Pn+1 (z)
&

Qn+1, *n
(z)&Qn+1, *n+1

(z)

Pn+1 (z)
,

formula (14) reads as

fn+1 (z)=an (z) fn (z)+bn (z). (28)

Observe that fn , an , and bn are analytic functions in C� "[&1, 1]. Moreover,
Lemmas 1 and 5, Proposition 2, and (15) give us the limits

a(z) =
def

lim
n

an (z)=
2_k(L)

.(z)
, b(z) =

def
lim

n
bn (z)=1&

2_
.(z)

,

which hold uniformly on compact subsets of C� "[&1, 1].
If we put

gn (z)= fn (z)&
b(z)

1&a(z)
,

then we can rewrite (28) as

gn+1 (z)=a(z) gn (z)+=(z), (29)

with

=n (z)=[an (z)&a(z)] gn (z)+bn (z)&b(z)
1&an (z)
1&a(z)

.
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Notice that |.(z)|>1 for z � [&1, 1], and with account of (22), |a(z)|<1
in this domain. In particular, for a fixed compact set K/C� "[&1, 1] there
exist constants 0<r<1, R>0, and n0 # N such that

|an (z)|�r, |bn (z)|�R, for n�n0 , z # K.

Thus,

| fn+1 (z)|�r | fn (z)|+R, n�n0 , z # K,

and it is straightforward that [ fn] and [gn] are uniformly bounded on
compact subsets of C� "[&1, 1]. Consequently,

lim
n

=n (z)=0,

uniformly on compact subsets of C� "[&1, 1]. Using (29) it is easy to
establish the same behavior for gn (z). In other words, we have proved that

lim
n

fn (z)=
b(z)

1&a(z)
, (30)

also locally uniformly in C� "[&1, 1]. It remains to rewrite (30), in order to
obtain (8). Indeed, by (5) and (6),

9(z)=
.$(z)

2 \1&
2_

.(z)+ ,

and thus,

b(z)=
29(z)
.$(z)

.

Analogously,

a(z)=k(L) \1&
29(z)
.$(z) + .

Substituting these expressions into (30) we arrive at the expression in the
right bared side of (8). K

Since the zeros of Tn accumulate at the support of the measure +1 , we
can sharpen the statement of Corollary 1:
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Corollary 3. Under assumptions of Theorem 1,

,
n�1

.
�

k=n

[z: Qk, *k
(z)=0]=supp +1 .

The assertions of Theorem 1 can be formulated in terms suitable for a
general conjecture on asymptotics of the balanced Sobolev polynomials.
We will restrict ourselves to the absolutely continuous case (Case 1 of
Proposition 1).

For 0�L<� we introduce the measure +* on [&1, 1],

d+*(x)=[+$0 (x)+L |.$(x)| 2 +$1 (x)] dx, x # [&1, 1]. (31)

Let Rn (x)=xn+ } } } be the sequence of monic polynomials, orthogonal on
[&1, 1] with respect to +* and

*n (L)=&Rn&2
L2(+*)=|

1

&1
|Rn (x)|2 d+*(x).

Then, the statement of Theorem 1 corresponding to the absolutely con-
tinuous case is equivalent to the following

Corollary 4. Let (+0 , +1) be a coherent pair of measures satisfying the
Szego� condition on [&1, 1] (cf. Case 1 of Proposition 1), and the sequence
[*n] as in (3)�(4). Then,

lim
n

*n (L)
}n (*n)

=1, (32)

and

lim
n

Qn, *n
(z)

Rn (z)
=1, (33)

locally uniformly in C� "[&1, 1].

In other words, the sequence [Qn, *n
] asymptotically behaves as the

monic orthogonal polynomials sequence corresponding to the measure
(31).

Proof. Due to relation (9) and the definition of ., in our case

d+*(x)=
x&'
x&!

w0 (x) dx, (34)

where

'=!+L sgn !.
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Thus, the problem is reduced to the asymptotic behavior of polynomials
corresponding to a rational modification of the weight w0 . This situation
has been thoroughly studied; an obliged reference is the monograph [10].
In particular, from Lemma 10 of [10, Sect. 6.1], it is easy to obtain that

lim
n

?n

*n (L)
=

.(!)

.(')
. (35)

Thus, in order to prove (32) it is sufficient to show that the right hand side
of (35) coincides with the value of k(L) given in (22). This is straight-
forward if we notice that Eq. (26) for k(L) can be rewritten in this case as

[.(!)]2 q2&2'.(!) q+1=0.

Now we turn to formula (33); again, it is sufficient to prove that the func-
tion in the right hand side of (8) describes the ratio asymptotics of Rn �Pn ,
which is reduced to the computation of some simple Szego� functions. In
fact, for a # C� "[&1, 1] let

F(z; a)=
|.(a)|2

2.(a)
.(z)&.(a)

z&a
.(z)

.(z) .(a)&1
. (36)

Notice that F(z; a) is analytic single-valued and non-vanishing in
C� "[&1, 1], F(�; a)=1, and for x # (&1, 1),

lim
y � 0

|F(x+iy; a)|= } .(a)
2(x&a)}.

Thus, Szego� 's theory (see, e.g., [12, Theorem 12.1.2, 13, Theorem 9.1])
along with (34) yield that

lim
n

Rn

Pn
(z)=\F(z; ')

F(z; !)+
1�2

,

locally uniformly in C� "[&1, 1], where the branch of the root is fixed by
the value 1 at infinity. By (6) and (8), it is sufficient to establish that

F(z; ')
F(z; ')

=\ 9(z)
k(L) 9(z)+(1&k(L)) .$(z)�2+

2

. (37)

This can be done by direct computation if we use the explicit expressions
(cf. (13) and (35))

9(z)=
.$(z)

2 \1&
1

.(!) .(z)+ , k(L)=
.(!)
.(')

,
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the fact that !, ' # R"(&1, 1) and the identity

.(z)&.(a)
2.(a)(z&a)

=
.(z)

.(z) .(a)&1
, a # R"(&1, 1).

The corollary is proved. K

Finally, we pose the following

Conjecture 1. The assertions of Corollary 4 hold when both +0 and +1

satisfy the Szego� condition on [&1, 1] and +* is given by (31).
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